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Abstract White lupin (Lupinus albus L.) has been around

since 300 B.C. and is recognized for its ability to grow on

poor soils and application as green manure in addition to

seed harvest. The seed has very high levels of protein

(33–47 %) and oil (6–13 %). It also has many secondary

metabolites that are potentially of nutraceutical value to

animals and humans. Despite such a great potential, lupins

role in modern agriculture began only in the twentieth

century. Although a large collection of Lupinus germplasm

accessions is available worldwide, rarely have they been

genetically characterized. Additionally, scarce genomic

resources in terms of recombinant populations and genome

information have been generated for L. albus. With the

advancement in association mapping methods, the natural

populations have the potential to replace the recombinant

populations in gene mapping and marker-trait associations.

Therefore, we studied the genetic similarity, population

structure and marker-trait association in a USDA germ-

plasm collection for their current and future application in

this crop improvement. A total of 122 PI (Plant Inventory)

lines were screened with 18 AFLP primer pairs that gen-

erated 2,277 fragments. A subset of 892 polymorphic

markers with MAF [0.05 (minor allele frequency) were

used for association mapping. The cluster analysis failed to

group accessions on the basis of their passport information,

and a weak structure and low linkage disequilibrium (LD)

were observed indicating the usefulness of the collection

for association mapping. Moreover, we were also able to

identify two markers (a p value of 1.53 9 10-4 and

2.3 9 10-4) that explained 22.69 and 20.5 % of seed

weight variation determined using RLR
2 . The implications of

lack of geographic clustering, population structure, low LD

and the ability of AFLP to map seed weight trait using

association mapping and the usefulness of the PI collec-

tions in breeding programs are discussed.

Introduction

Lupinus albus L. is an old world (Pazy et al. 1977) species

of genus Lupinus with 2n = 50 (Gladstones 1998) and has

long been cultivated around the Mediterranean and in the

Nile valley (Gladstones 1998; Zohary and Hopf 2000).

Major producing countries as of 2007 include Australia,

Germany, Chile, and Poland followed by some sustained

lower level production in South Africa, Morocco, and

France. In Europe, the reasons for lupin production con-

traction include Anthracnose and Fusarium wilt diseases

and competition with soybean imports. In the early part of

twentieth century, it has been used as a cover crop in many
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parts of the USA (Cowling et al. 1998; Huyghe 1997;

Wells et al. 1980). However, due to the phenomenal suc-

cess of soybean in the USA agriculture system, the avail-

ability of affordable nitrogen fertilizers and the presence of

some undesirable alkaloids in older varieties, it did not

receive due attention needed to become a major legume

crop. Recently, there is increased interest in lupins in

southern USA for use as a late winter, high protein live-

stock feed, food, forage and cover crop (Bhardwaj et al.

1998; Bhardwaj et al. 2004; Hamama and Bhardwaj 2004;

Noffsinger and van Santan 2005; Bhardwaj 2006; van

Santen et al. 2006; Hill and van Santen 2006).

Germplasm collections are important source of genes for

improving disease and pest resistance and tolerance to

abiotic stresses in breeding programs in addition to the

species conservation. According to the IPGRI Directory of

Germplasm Collections Database, there are estimated

40,000 holdings of Lupinus germplasm accessions around

the world (Wolko et al. 2011). USDA-NPGS has a col-

lection of over 200 PI lines of L. albus collected/donated

from various parts of the world. Genetic diversity studies

have been conducted on some Lupinus germplasm collec-

tions, which have provided useful information for crop

improvement programs. Four geographical races of L. al-

bus from the Mediterranean region were characterized

using multivariate statistical method (Simpson 1986).

Neves-Martins (1986, 1994) evaluated 200 Portuguese

L. albus ecotypes using a range of morphological charac-

ters and described winter, spring, and intermediate types.

However, the diversity studies based on morphological

traits have their limitations as they can be easily influenced

by the environment and growth conditions. Moreover, the

utility of germplasm collections for crop improvement rests

largely on the accuracy of evaluation and passport data,

and on the genetic fidelity of the materials. There is a need,

therefore, to test the genetic identity of all accessions held

within a collection.

Major agricultural crops such as corn, wheat, soybean

and to some extent cotton have received most of the

attention for the development of genomic resources

including genome sequencing, identification of high den-

sity single nucleotide polymorphism (SNP) and the

development of new powerful approaches to the mapping

of complex traits and to the subsequent identification of

causal genes. The genome size of the genus Lupinus is

relatively small. The DNA amount of L. albus is 0.6 pg/1C,

which is slightly larger than Arabidopsis thaliana (L.)

Heynh. (0.30 ± 0.14 pg/1C) (http://data.kew.org/cvalues/

CvalServlet?querytype=2). A National Center for Bio-

technology Information search showed that there are

little over 9,000 (9,325) expressed sequence tags (ESTs),

150 Genome Survey Sequence (GSS) records and 890

nucleotide sequences available for L. albus (http://www.

ncbi.nlm.nih.gov) and also reported in Tian et al. (2009)

and Rodriguez-Medina et al. (2011). There have also been

some efforts to construct linkage maps for L. albus. Phan

et al. (2007) identified 28 major linkage groups (three more

than the haploid chromosome number) in an F8 RIL pop-

ulation using STS and AFLP markers. In this study, they

identified QTLs for anthracnose resistance, flowering time

and seed alkaloid content. In another independent mapping

study using F5 RIL and STS and AFLP markers, Croxford

et al. (2008) identified 25 linkage groups and mapped

QTLs for flowering time, seed alkaloid content, and stem

height. The two studies shared only a few markers which

made the comparison between the two linkage maps

difficult.

Genome-wide association studies in populations of

unrelated individuals provide an efficient way to map the

locations of quantitative trait loci (QTL) (Rafalski 2010;

Astle and Balding 2009). Compared to linkage mapping

where allele frequencies and recombination events are

determined by experimental design, the association map-

ping faces challenges that arise from the complex history

of the populations under study (Hamblin et al. 2011;

Myles et al. 2009). Distinct patterns of population struc-

ture, allele frequency distribution and linkage disequilib-

rium arise from the domestication history, breeding

history, ancestral population characteristics and mating

system of the crop under investigation (Hamblin et al.

2011). Therefore, the knowledge of all these attributes of

the populations under study is important to achieve

maximum power and resolution with appropriate experi-

mental designs. The association mapping approach can be

exploited in the lupin breeding and genetics as large well-

characterized (phenotyped) germplasm collections and

breeding populations exist for the main agricultural lupin

species (Wolko et al. 2011). The main limiting factor is

the scarcity of genomic information for effective imple-

menting of association mapping. However, even before

the start of SNP discovery and large scale genotyping of

populations, it is important to explore the population

structure and the level of linkage disequilibrium (LD) in

the target populations.

There are several methods available for genetic diversity

and population structure analysis including random

amplified polymorphic DNA (RAPD), simple sequence

repeat (SSR) and amplified fragment length polymorphism

(AFLP) markers among many others. Application and

suitability of various marker systems in genetic diversity

analysis and gene bank management have been extensively

reviewed by Spooner et al. (2005). More recently, Zhang

et al. (2011) has used diversity arrays technology (DArT)

markers to investigate the genetic diversity and population

structure of Chinese common wheat (Triticum aestivum

L.). Although the DArT is a sequence-independent method
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but requires complexity reduction steps that can be biased

to the certain genomic regions. In the absence of the

detailed knowledge of the molecular basis or DNA

sequence of the trait of interest, the whole genome scan or

genome-wide association study works better for association

mapping. The whole genome scan involves genotyping

densely distributed marker loci covering all the chromo-

somes and, therefore, testing for association of most of the

markers covering the genome (Rafalski 2010). Therefore,

due to the lack of sequence information for L. albus and the

potential uniform coverage by AFLP analysis, we selected

AFLP markers for exploring the genetic diversity of

L. albus PI lines and investigated the suitability of the PI

lines for association mapping and marker-trait association.

We further employed various models to analyze the pop-

ulation structure or lack of it which can have far reaching

consequences for association mapping using any germ-

plasm collection. Using association mapping, the 122 PI

lines were tested for seed weight, an important agronomic

trait for association with the AFLP markers.

Materials and methods

Plant materials and DNA isolation and AFLP analysis

A total of 122 PI lines were obtained from the USDA

germplasm collection (Table 1) and grown in 30-cm pots at

the Agricultural Research Station of Virginia State Uni-

versity, Petersburg, VA, USA. Young leaves were col-

lected and DNA was isolated using DNeasy plant mini kit

(QIAgen, CA, USA) according to the manufacturer’s

instructions. The quality of isolated DNA was checked by

running on 0.8 % agarose gel in TBE buffer and the con-

centration was measured by a UV–Visible spectropho-

tometer. AFLP analysis was carried out using 20 primer

pairs (Supplementary Table 1) according to the Vos et al.

(1995) with some modifications (Chang et al. 2009). The

AFLP fragments were scored as present (1) and absent (0)

for each amplified locus by the fragment analysis software

of CEQ8800. The binary data sets were exported for further

analysis.

Data analysis: imputation and marker statistics

A likelihood based imputation was used to impute missing

data implemented in fastPHASE 1.3 with default settings

(Scheet and Stephens 2006). Minor allele frequency (MAF)

was estimated in Powermarker 3.0 (Liu and Muse 2005).

Nei’s gene diversity (Nei 1973) provides an estimation of

the discriminatory power of each marker (Le Couviour

et al. 2011) and was calculated using the software Popgene

1.32 (Yeh et al. 1999).

UPGMA tree

For further analysis, only markers with MAF [0.05 were

used. A similarity matrix with Jaccard similarity coefficient

as suggested by Blair et al. (2011) was estimated in SAS

9.2 using the DISTANCE procedure. Further, a UPGMA

tree was built using CLUSTER and TREE procedures in

SAS 9.2.

Population structure

To prevent bias in estimation of population structure, we

used a subset of markers that have an LD\0.5 with every

other marker estimated in TASSEL (Bradbury et al. 2007).

For estimation of number of sub-populations, STRUC-

TURE 2.3 was used. The basic algorithm was described by

Pritchard et al. (2000). Extensions to the method were

published by Falush et al. (2007) and Hubisz et al. (2009).

The admixture model was used with a burn in of 100,000

and 500,000 iterations for sub-populations numbers

(k) ranging from 1 to 15 considering the allele frequencies

to be independent. Five runs for each k value were per-

formed, and the posterior probability of the model was

determined for each run. The optimum number of sub-

populations was determined using the Dk approach by

Evanno et al. (2005) and Wilcoxon two sample tests as

described by Rosenberg et al. (2001). For the Dk approach,

we used structure harvester (http://taylor0.biology.ucla.

edu/struct_harvest) to obtain the best number of subpopu-

lations. For the Wilcoxon test, we compared the posterior

probabilities of two successive sub-populations (k1 vs. k2,

k2 vs. k3, k3 vs. k4, and so on) using the NPAR1WAY

procedure in SAS. The smaller k value in a pairwise

comparison for the first non-significant Wilcoxon test was

chosen as the best number of subpopulations (Mamidi et al.

2011).

Genotypes were further divided into sub-populations

based on membership coefficients estimated in STRUC-

TURE. We used Popgene 1.32 to estimate the genetic

identity and genetic distance between the different sub-

populations. Principal component analysis (PCA) which

also controls for population structure was performed using

the PRINCOMP procedure in SAS. A 3D plot of the first

three PCs was used to visualize the dispersion of the

genotypes.

Linkage disequilibrium

LD coefficients (r2) were calculated for each of the pair-

wise comparison and the significance was estimated using

1,000 permutations in TASSEL. Average r2 and percent of

observations p \ 0.01 significance level were estimated

over all the pairwise comparisons (Rossi et al. 2009). Since
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Table 1 List of L. albus accessions, their passport information, the cluster (as in Fig. 1) they fall in after genetic similarity analysis (UPGMA

tree) and subpopulation number based on 8 [Sub # (8-pop)] or 5 [Sub # (5-pop)] subpopulations from STRUCTURE analysis

Country of origin Plant-ID Accession DNA ID Cluster no. Sub # (8-pop) Sub # (5-pop)

Algeria LA 71 PI 457940 39 4 5 5

AR, USA LINE NO. 10 PI 606481 118 5 1 2

AR, USA LINE NO. 7 PI 615405 123 5 1 2

AR, USA LINE NO. 8 PI 615406 124 5 7 2

Australia HAMBURG PI 469095 61 4 5 5

Australia ULTRA PI 469096 62 4 5 5

Brazil MN 3 PI 244572 6 2 6 1

Bulgaria 31620 PI 368914 16 3 3 4

Bulgaria 31621 PI 368915 17 3 8 4

Bulgaria VIR 1550 PI 481549 71 3 7 4

Bulgaria CPI 31620 PI 487437 89 4 5 5

Czech Republic 22840 PI 368911 15 4 2 1

Egypt TERMIS PI 250094 7 4 6 3

Egypt NA PI 250572 8 2 6 3

Egypt EGYPTICA PI 481551 73 3 8 4

Egypt E92-2 PI 606484 121 5 1 2

Egypt E92-13 PI 606485 122 3 1 2

Former Soviet Union (FSU) KIEVSKIJ MUTANT PI 381322 18 4 3 4

France LA 25 PI 457933 32 1 8 3

France LA 26 PI 457934 33 1 2 3

France LA 27 PI 457935 34 3 8 3

France LUBLANC PI 467348 57 3 3 4

France LUCKY PI 467349 58 3 3 4

France C 9 PI 467351 59 3 8 3

France LUCKY PI 606482 119 3 2 3

FSU KIEV EARLY PI 487434 87 4 4 1

FSU KIEV N409 PI 487435 88 4 4 1

GA, USA TIFWHITE-78 PI 615409 125 3 7 2

Germany PFLUG-MANSA PI 237719 4 4 6 5

Germany MN 48 PI 287241 12 4 4 1

Germany SAATGUT PI 316610 14 4 2 1

Germany P.B. WEISLUP PI 481554 76 1 8 3

Germany WEISE BITTERLUPINE PI 481555 77 4 5 5

Germany NA PI 502648 90 1 2 3

Germany GR 337 PI 516625 100 1 8 4

Germany GR 338 PI 516626 101 3 2 3

Germany GR343 PI 516630 126 1 3 4

Greece GR 1 PI 457921 22 4 5 5

Greece GR 3 PI 457923 23 4 5 5

Greece GR 5 PI 457924 24 3 8 3

Greece GR 7 PI 457926 25 1 8 3

Greece GR 8 PI 457927 26 3 8 2

Greece GR 9 PI 457928 27 3 2 3

Greece GR 10 PI 457929 28 3 5 3

Greece GR 11 PI 457930 29 4 5 5

Greece GR 12 PI 457931 30 4 5 5

Greece GR 13 PI 457932 31 4 5 5
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Table 1 continued

Country of origin Plant-ID Accession DNA ID Cluster no. Sub # (8-pop) Sub # (5-pop)

Greece LA 56 PI 457936 35 3 2 3

Greece LA 57 PI 457937 36 4 4 1

Greece VIR 1437 PI 481546 68 3 7 5

Hungary GYULATANYAI EDES PI 232924 3 2 6 3

Hungary KRAFTQUELL PI 289160 13 4 5 5

Hungary VIR 1504 PI 481547 69 4 4 1

Hungary ME 74 PI 502652 93 1 2 3

Italy LA 106 PI 457959 56 1 2 3

Italy GR 334 PI 516624 99 3 4 1

Lebanon IFLU 32 PI 483074 84 1 3 3

Morocco 9483 PI 457938 37 4 4 1

Morocco VIR 2005 PI 481556 78 4 5 5

Morocco IFLU 31 PI 483073 83 3 2 3

Morocco GR 333 PI 516623 98 4 4 1

NA no. 22 PI 543013 116 5 2 3

NA no. 563 PI 543024 117 5 3 2

The Netherlands NA PI 168891 1 2 2 3

New Zealand KALI PI 434855 20 4 3 4

New Zealand ULTRA PI 434856 21 4 5 1

Poland KALI PI 386098 19 4 3 4

Poland WTD 180 PI 468129 60 4 5 5

Poland KALINA PI 476374 66 1 3 4

Poland KALI PI 476375 67 4 4 4

Poland BIALY POZNY PI 481548 70 4 5 5

Poland KALI PI 502650 91 3 3 4

Poland BIALY 1 PI 505844 94 1 8 3

Russian Federation VIR 1423 PI 457956 55 4 5 5

South Africa NA PI 243335 5 4 6 1

Spain LA 70 PI 457939 38 4 5 5

Spain 1082 PI 457941 40 1 2 3

Spain 1107 PI 457942 41 1 8 3

Spain 1186 PI 457943 42 3 3 4

Spain 1134 PI 457944 43 3 2 3

Spain 1190 PI 457945 44 4 5 5

Spain 1585 PI 457946 45 4 5 5

Spain 1586 PI 457947 46 4 5 5

Spain 1587 PI 457948 47 4 5 5

Spain 1588 PI 457949 48 3 8 3

Spain 1589 PI 457950 49 1 2 3

Spain 1590 PI 457951 50 1 2 3

Spain 1591 PI 457952 51 3 8 3

Spain 1592 PI 457953 52 2 2 3

Spain 1593 PI 457954 53 4 5 5

Spain 1594 PI 457955 54 4 5 5

Spain VIR 2362 PI 481559 80 4 5 5

Spain No. 267 PI 533694 102 3 3 4

Spain No. 269 PI 533695 103 3 3 4

Spain No. 530 PI 533697 105 5 1 1
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no mapping data were available, we assumed that 10 %, or

15 % or 20 % or 25 % of the total pairwise comparisons

could be intra-chromosomal comparisons and the rest are

inter-chromosomal comparisons. We created 100,000 ran-

dom permutation datasets for each of the four levels

assumed in SAS 9.2. For each of the permuted dataset, we

calculated the average r2 and percent of observations\0.01

significance level.

Association mapping

To test the usefulness of this population for association

mapping, we used seed weight, an important agronomic

trait. The phenotypic data were obtained through weighing

100 seeds (g) of harvested seed from regeneration plots at

Washington State University’s Whitlow farm (46�4302800N
117�0800700W), Pullman, WA, USA. The number of prin-

cipal components (eigenvectors) which collectively explain

25 % of the variation was selected for the association

analysis (Stich and Melchinger 2009); in addition to

structure matrix that has membership coefficients of an

individual in a sub population. A pairwise Loiselle kinship

coefficient matrix (K matrix) (Loiselle et al. 1995) was

estimated using SPAGeDi 1.2 (Hardy and Vekemans

2002). Negative values for the kinship matrix were set to

zero as described by Yu et al. (2006). Another allele sim-

ilarity matrix K* (Zhao et al. 2007), representing the pro-

portion of shared alleles for all pairwise comparisons in

each population, was estimated in SAS 9.2.

Twelve different linear regression models were tested

for marker-trait association using the MIXED procedure in

SAS 9.2 (Table 2). The underlying equation for the 12

models is

y ¼ XaþQbþKvþ e

In this model, y is a vector for phenotypic observations,

a is the fixed effects related to the AFLP marker, b is a

vector of the fixed effects related to the population

structure, m is a vector of the random effects related to

the relatedness among the individuals, and e is a vector of

Table 1 continued

Country of origin Plant-ID Accession DNA ID Cluster no. Sub # (8-pop) Sub # (5-pop)

Spain No. 544 PI 533698 106 5 1 2

Spain No. 558 PI 533700 107 5 1 2

Spain No. 571 PI 533701 108 3 1 2

Spain No. 576 PI 533702 109 1 2 3

Spain No. 584 PI 533703 110 5 1 2

Spain R-6002, NORTo 486 PI 533704 111 5 2 3

Spain R-6019, NORTo 484 PI 533705 112 5 1 3

Spain No. 47 PI 533706 113 5 1 2

Spain No.175 PI 533707 114 5 1 1

Spain 870529-02 PI 533714 115 5 2 3

Spain MULTULUPA PI 606483 120 3 1 2

Sudan ME 51 PI 476370 63 4 5 5

Sudan VIR 1644 PI 481552 74 1 2 3

Syria VIR 2229 PI 481558 79 4 5 5

Syria IFLU 29 PI 483072 82 1 3 4

Syria IFLU 33 PI 483075 85 1 8 3

Turkey NA PI 179361 2 2 2 3

Ukraine KIEVSKIJ SKOROSPELYJ PI 476372 64 3 3 4

Ukraine GORIZONT PI 476373 65 1 3 4

Ukraine NOSOVSKIJ-3 PI 505845 95 3 8 3

Ukraine KIEVSKIJ MUTANT PI 505846 96 4 4 1

Ukraine LOTOS PI 505847 97 4 4 1

Ukraine VIR 2603 PI 533696 104 5 2 1

Yugoslavia MN 181 PI 251559 9 1 8 2

Yugoslavia NA PI 255375 10 3 8 2

Yugoslavia NA PI 255471 11 3 2 3

Yugoslavia VIR 2374 PI 481560 81 3 2 3

522 Theor Appl Genet (2012) 125:517–530

123



the residual effects. X is a matrix of alleles of the markers, P

is the matrix of the principal components (in place of Q

matrix), K is the Loiselle kinship coefficient matrix, and K*

is the allele similarity matrix. The variances of the random

effects were estimated as Var (u) = 2KVg and Var

(e) = IVR, where K is a kinship matrix, I is an identity

matrix with the off-diagonal elements as 0 and diagonal

elements is the reciprocal of the number of the observations

for which the phenotypic data were obtained, Vg is the

genetic variance, and VR is the residual variance. For each

model, the positive false discovery rate (pFDR) was

estimated for all markers using the MULTTEST procedure

in SAS 9.2 to correct for multiple marker-trait association.

For the selection of best model, mean square difference

(MSD) was calculated as:

MSD ¼
Pn

i¼1 pi � i
n

� �2

n

where i is the rank number, pi is the probability of the ith

ranked p value, and n is the number of markers (Mamidi

et al. 2011). Best model is defined as the one with lowest

MSD value. The multiple RLR
2 values for the significant loci

were calculated using MIXED procedure in SAS as

described in Sun et al. (2010).

Results

A total of 20 EcoRI ? MseI primer combinations were used

for the AFLP analysis of the 122 L. albus PI lines. However,

two primer pairs did not produce consistent amplification

profiles among majority of the varieties and, therefore, were

dropped from the analysis. The 18 primer pairs amplified a

total of 2,277 fragments that were detected by the CEQ 8800

genetic analysis system. The scored fragments ranged in size

from C53 to B650 bp in length. The average number of DNA

fragments amplified by each primer pair was 126. This rela-

tively high number of amplified fragments was due to the high

sensitivity of D4-dye detection by the CEQ 8800 system and

the two additional selective nucleotide used in the EcoRI

primer (EcoRI ? 2) in the selective amplification. The MseI

primer contained 3 additional nucleotides (MseI ? 3) in the

selective amplification.

A total of 2,277 AFLP loci were used for the analyses.

Missing loci which contribute about 9.55 % were imputed.

Of the 2,277 loci, 892 loci have a MAF[0.05, and only these

were used for further analyses. For these loci that have a MAF

[0.05, the mean Nei’s gene diversity was 0.2985.

Genetic diversity

The UPGMA analysis of the AFLP fingerprints for the 122

lines resulted into five major clusters (Fig. 1). The fewest

number of accessions (six) was grouped in second cluster

and the largest numbers of accessions (44) were grouped in

the fourth cluster. The other three clusters contained 16

(cluster number 5), 22 (cluster number 1) and 34 (cluster

number 3) accessions. However, the cluster analysis did not

group accessions according to their country of origin. The

second cluster grouped accessions originating from Brazil,

Egypt, Hungary, The Netherlands, Spain and Turkey

(Table 1). The most closely clustered accessions PI434855

and PI386098 (cluster 4) were collected/donated from New

Zealand and Poland, respectively. Similarly, the second

most closely related accessions pair, PI467348 and

PI502650 (cluster 3) originated from France and Poland,

respectively. The similarity (Jaccard similarity coefficient)

of individuals ranges from 0.276 to 0.662. The highest is

between the accessions PI 502650 and PI 467348, and the

lowest is between the accessions PI 457950 and PI 615406.

Population structure

Only 625 loci that have an LD \0.5 with any other loci

were used for population structure analysis. The Bayesian-

based clustering approach implemented in STRUCTURE

Table 2 Summary of the statistical models used to test the data for marker-trait associations

Model Statistical model Information captured in the model

Naive y ¼ Xaþ e y is related to X

K y ¼ XaþKvþ e y is related to X, with Kinship (Loiselle coefficient)

K* y ¼ XaþK�vþ e y is related to X, with allele similarity matrix

Q y ¼ XaþQbþ e y is related to X, with Q

PCA y ¼ Xaþ Pbþ e y is related to X, with PCA

Q ? K y ¼ XaþQbþKvþ e y is related to X, with Q and (Loiselle coefficient)

Q ? K* y ¼ XaþQbþK�vþ e y is related to X, with Q and allele similarity matrix

PCA ? K y ¼ Xaþ PbþKvþ e y is related to X, along with PCA and kinship (Loiselle coefficient)

PCA ? K* y ¼ Xaþ PbþK�vþ e y is related to X, along with PCA and allele similarity matrix

All the three models with Q were run for five and eight subpopulations
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reveals the presence of five or eight subpopulations by

Dk approach used for selecting the best number of sub-

populations (Fig. 2a). Alternatively, the Wilcoxon test

revealed the presence of eight subpopulations (Fig. 2b).

Majority of the individuals have a membership coefficient

(qi) \0.7 (111 of 122 individuals) to be assigned to a

subpopulation revealing a weak population structure

among individuals and/or an admixed sample (Rossi et al.

2009; Mamidi et al. unpublished).

We divided the population into five and eight subpopu-

lations based on the estimated membership in the STRUC-

TURE matrix, to look at the genetic identity and genetic

distance between the clusters (Table 3). When the popula-

tion is divided into eight subpopulations, the genetic distance

between the groups is within the range of 0.035–0.193 with a

mean value of 0.096. The genetic identity within a cluster is

in the range of 0.824–0.965 with a mean of 0.9085. When the

population is divided into five subpopulations, the genetic

distance between the groups is within the range of

0.0274–0.0504 with a mean value of 0.04116. The genetic

identity within a cluster is in the range of 0.9508–0.973 with

a mean of 0.9597. This also indicates a weak population

structure similar to the results obtained above. Further, a plot

of the three principal components that explain 13.7 % vari-

ation reveals no clear clustering pattern of the eight sub-

populations and supports the idea of a weak population

structure (Fig. 3). Eight principal components that explain

25.5 % variation were included for association mapping

analyses. The allele similarity between individuals is in the

range of 0.53–0.8528.

Linkage disequilibrium

The overall average r2 for all pairwise comparisons is

0.0168 (95 % CI 0.0165–0.0171) and the percent of

observations with a p \ 0.01 are 4.75 %. The distribution

of average r2 for 100,000 permutations (10 % pairwise

comparisons) is within the range of 0.0166–0.0175 with a

peak distribution at 0.01686. The proportion of r2 values

that are significant (p \ 0.01) (10 % pairwise comparisons)

is within the range of 4.375–5.125 with a peak distribution

at 4.725. Similar distributions were obtained for other three

levels of intra-chromosomal pairwise comparisons (15, 20,

and 25 %).

Association mapping

Of the 12 models tested, model with PCA and K performed

best (MSD = 0.00069). All other models have the MSD

within the range of 0.0006–0.002. Two markers that meet

the criteria of significance (p \ 0.05 and pFDR \ 0.1)

were ECAGMCGC76 and ECACMCGC105. These two mark-

ers have a p value of 1.53 9 10-4 and 2.3 9 10-4,

respectively (Table 4). These two markers explain 22.69

and 20.5 % of seed weight variation, respectively.

Discussion

Plant breeders use genetic resources to create novel gene

combinations and to select crop varieties more suited for

diverse agriculture systems and rapidly changing climatic

conditions. There are over 1,400 gene banks containing a

wealth of over six million accessions available and acces-

sible for crop improvement (Hammer et al. 2003). Still,

these resources are barely used (Upadhyaya et al. 2006) by

breeders, may be due to the scarcity of information about

these collections other than their geographic origin and

M
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K
)

# of subpopulations
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b

Fig. 2 a A graph with Dk and number of subpopulations to determine

the number of subpopulations (Evanno et al. 2005). The peak
represents the appropriate number of subpopulations. b A graph
generated from Wilcoxon test with mean LnP (k) on y axis and

number of sub-populations on X axis

Fig. 1 UPGMA tree showing the genetic relationship of individual

accessions analyzed using AFLP markers. The dendrogram was

generated with SAS 9.2 using Jaccard’s similarity coefficient. Five

clusters were identified and the passport information of the accessions

belonging to each cluster is listed in Table 1

b
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taxonomic status. Genetic structure or the genetic diversity

often reflects biologically meaningful processes. Under-

standing the patterns in genetic diversity and physical

addresses of genes in genetic maps both of which are the

result of natural processes, the characteristic of the species

and historical events, can provide a stronger scientific basis

for the faster and better use of germplasm collections in

plant improvement. Molecular characterization has become

the favored means to access variation within large germ-

plasm samples. For non-model organisms, AFLPs are a

valuable tool when large numbers of marker are required

for genomic scans and subsequent hypothesis testing

(Meudt and Clarke 2007). The anonymous AFLP markers

consist largely of non-coding DNA (Shirasawa et al. 2004;

Wong et al. 2001), are widely distributed throughout the

genome and allow the assessment of genome-wide varia-

tion (Meudt and Clarke 2007). In this study, the 18 AFLP

primer combinations amplified 2,277 fragments each

potentially a unique locus giving an overall good coverage

of the L. albus genome which is slightly bigger than Ara-

bidopsis. Although the di-allelic loci such as AFLP are

individually less informative, their sheer number gives the

statistical power to outperform microsatellite loci for dis-

criminating taxa and populations (Woodhead et al. 2005;

Campbell et al. 2003).

Our results indicate that the clusters based on the genetic

distances did not group accessions on the basis of their

geographic origin. Gilbert et al. (1999) used ISSR-PCR

based DNA fingerprints to study genetic variability among

37 L. albus accessions from University of Reading, UK

collection. They scored 137 DNA bands and upon UPGMA

analysis observed some evidence of clustering. However,

they also failed to relate clustering to the geographical

origin and suspected that the cause may be the poor doc-

umentation and widespread transportation of stocks

between the countries. Our inability to correlate the clus-

tering with the geographic origin of various accessions

even with the 16 times higher (2,277) number of loci is also

suspected to be due to extensive movement of germplasm

across various countries before arrival at the USDA

germplasm collection. The genetic similarity information

of the germplasm collection generated in this study is more

useful than the passport information in the optimal use for

crop improvement. Moreover, the genetic information from

the AFLP markers was also used to infer the population

structure and their suitability for association mapping.

The L. albus germplasm studied showed weak signs of

population structure. Although the genotypes are classified

into five or eight sub-populations based on STRUCTURE,

the genetic identity between the clusters is high. With this

Bayesian model-based STRUCTURE, the estimated

memberships for each individual to be assigned to a sub-

population are very low. In addition to these, the MSD

values calculated are approximately similar, for example

the naı̈ve model has an MSD of 0.0014, the Q-model has

an MSD of 0.0017 and the PCA model has 0.0007. This

means that addition of a structure matrix does not add

much to the model supporting a weak population structure.

Table 3 Subpopulation differentiation and genetic identity for five and eight subpopulations.

Five subpopulations

Subpop. 1 2 3 4 5

1 **** 0.9569 0.9635 0.9548 0.9688

2 0.0441 **** 0.9617 0.9584 0.9527

3 0.0371 0.0391 **** 0.973 0.9508

4 0.0463 0.0425 0.0274 **** 0.9564

5 0.0317 0.0484 0.0504 0.0446 ****

Eight subpopulations

Subpop. 1 2 3 4 5 6 7 8

1 **** 0.9259 0.9166 0.9034 0.9015 0.8667 0.8923 0.9228

2 0.0770 **** 0.9491 0.9351 0.9116 0.9072 0.8857 0.9616

3 0.0871 0.0523 **** 0.9254 0.9217 0.8817 0.9057 0.9655

4 0.1016 0.0671 0.0775 **** 0.9404 0.8954 0.8818 0.9185

5 0.1036 0.0925 0.0816 0.0615 **** 0.8832 0.8913 0.9198

6 0.1431 0.0974 0.1259 0.1105 0.1242 **** 0.8245 0.8921

7 0.1140 0.1214 0.0990 0.1258 0.1151 0.1930 **** 0.9126

8 0.0803 0.0392 0.0351 0.0850 0.0837 0.1142 0.0915 ****

Nei’s genetic identity (above diagonal) and genetic distance (below diagonal)
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This was not an unexpected result as the ancestral history

of this species is different than other major crops such as

rice, corn, beans, etc. First of all, the wild ancestor is only

semi-domesticated (Wolko et al. 2011), which makes the

species remain similar to the wild types without much

selection in the semi-domesticated/cultivated forms. Sec-

ond, the wild ancestor and the derived forms have the same

Mediterranean distribution, which leads to no adaptation or

selection differences. Third, due to the lack of domestica-

tion bottleneck, there was less impact upon the allele fre-

quencies, and genetic variation that segregate within

populations of cultivated plants (Hamblin et al. 2011). The

weak population structure makes this genotype collection

ideal as a starting point for association mapping because

structure leads to spurious associations (Abdurakhmonov

and Abdukarimov 2008; Astle and Balding 2009; Myles

et al. 2009; Hamblin et al. 2011; Mamidi et al. 2011).

The power of an association mapping study depends on

the strength of the LD (Hamblin et al. 2011; Myles et al.

2009; Abdurakhmonov and Abdukarimov 2008). LD is

usually measured using r2 and is said to perform well in

small sample sizes (Flint-Garcia et al. 2003). The LD

coefficient, r2, summarizes both recombination and muta-

tion history (Flint-Garcia et al. 2003). The overall LD

measured in our sample was very low in terms of r2.

With the ancestral history of L. albus and the weak

population structure this result was expected. The low LD

values can be explained by the lack of bottlenecks, and

selection which generally reduce the diversity and change

allele frequencies either to fixation or intermediate fre-

quencies (Hamblin et al. 2011). In addition to these, there

is no presence of genetic isolation, population structure or

admixture that makes LD lower (Abdurakhmonov and

Abdukarimov 2008). The other important factor that can

Fig. 3 A 3D plot of the first

three principal components that

together explain 13.7 %

variation. Each symbol
represents a subpopulation

(8 subpopulations) estimated

from Bayesian-based clustering

software STRUCTURE 2.3

Table 4 Significant AFLP markers associated with seed weight trait in L. albus

Marker MAF Minor allele mean Major allele mean p value pFDR R2

ECAGMCGC76 0.1475 24.65 30.65 1.53E-04 22.69 8.05

ECACMCGC105 0.459 27.99 31.30 2.3 E-04 20.5 4.86

MAF minor allele frequency, p value obtained in a PCA ? K mixed model, pFDR positive false discovery rate, R2 % variation explained by the

marker
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Fig. 4 Distribution of

phenotypic values of seed trait

for the 122 genotypes. Seeds
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regeneration plots and random

sample of 100 seeds were
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lead to low LD is the pollinating pattern of the species. A

self-pollinating crop has a higher LD because no oppor-

tunities for new recombinants can be generated (Nordborg

et al. 2002). On the other hand, out-crossing leads

to decreased LD due to creation of new recombination.

L. albus even though a self-pollinating crop has an out-

crossing rate of 8–10 % (Green et al. 1980) which may

have lead to a lower LD. Additionally, low coverage can

also lead to low LD.

Since allele frequencies have a large effect on the LD and

can lead to inaccurate estimates, we imputed the missing

values and removed the markers/loci that have a MAF\5 %

based on suggestions of Abdurakhmonov and Abdukarimov

(2008). LD varies among species, populations within a

species and even the marker system used to capture the

diversity information (Abdurakhmonov and Abdukarimov

2008). Differences in the extent of LD have an important

implication for association mapping studies. With the low

LD for this population, it can be inferred that a higher

number of markers are needed to identify the QTL respon-

sible for the traits. However, this can avoid the spurious

associations which are possible due to the long stretched LD

and or loci on different chromosomes (Abdurakhmonov and

Abdukarimov 2008; Hamblin et al. 2011).

Population structure can be the result of common

ancestry of large groups of individuals leads to spurious

associations and can be controlled by using a structure

matrix (Pritchard et al. 2000) and/or PCA (Patterson et al.

2006). Cryptic relatedness which is due to recent common

ancestry among smaller groups of individuals should also

be controlled as this can have a confounding effect similar

to that of population structure (Astle and Balding 2009;

Myles et al. 2009). With this, we used a mixed model

proposed by Yu et al. (2006) and which was successfully

implemented for many traits in many crops (Weber et al.

2007, 2008; Casa et al. 2008; Ghavami et al. 2011; Gurung

et al. 2011; Mamidi et al. 2011). In a mixed model, Q takes

only a few axes of variation into account, while the

K matrix captures the relatedness between each possible

pair of individuals in a sample (Astle and Balding 2009). In

many cases, a combination of structure and kinship

approach has been successful in interpreting the results

(Ghavami et al. 2011; Mamidi et al. 2011). Given the weak

population structure of the genotypes, lack of significant

bottleneck effects and selection, association mapping is

feasible for this population of L. albus. We selected seed

weight, an important trait that is used to breed new varie-

ties. Seed weight for the 122 accessions varied between

11.0 and 52.0 with a mean of 29.77 (±7.5) (Fig. 4). The

two markers identified explained 22.69 and 20.5 % varia-

tion in the seed weight trait.

Since the power of a mixed model is dependent on

phenotype, markers, population structure and relatedness,

we tested multiple models that perform better than other

models (Flint and Mackay 2009; Atwell et al. 2010;

Mamidi et al. 2011). Ideally, the p values obtained from a

mixed model follow a uniform distribution in a p-p plot

(Yu et al. 2006; Mamidi et al. 2011). So we tested 12

different linear regression models and the distribution of

the p values with that of a uniform distribution and selected

the model with the lowest MSD.

It can be argued that with such a low LD, higher number

of markers may have been required for association map-

ping. However, it is observed that the genome-wide esti-

mate of LD might not adequately reflect LD patterns of

specific regions (Abdurakhmonov and Abdukarimov

2008). Secondly, we used 892 AFLP markers (MAF[0.05)

from 2277 markers that are supposed to be randomly dis-

tributed across the 25 pairs of chromosomes on a genome

slightly larger in size to A. thaliana (Hajdera et al. 2003).

Lupinus albus or white lupin is recognized for its wide

adaptation, high protein (33–47 %) and oil (6–13 %)

depending on the varieties and genotypes (Huyghe 1997;

Petterson et al. 1997). However, it is still a relatively un-

adopted crop. AFLPs are valuable for such non-model

species as the large number of loci required for whole

genome scans can be easily produced and are very pow-

erful for intra-species genetic diversity and population

structure analysis. Efficiently accessing genetic diversity in

the germplasm collections could enhance their use in crop

improvement programs. The overall genetic diversity and

lack of any structure are indicative of the suitability of this

Lupin germplasm collection for association mapping and

developing gene based SNP markers for study of associa-

tions without waiting for the development of purpose-cre-

ated populations.
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